A Lego System for Conditional Inference
نویسندگان
چکیده
Conditioning on the observed data is an important and flexible design principle for statistical test procedures. Although generally applicable, permutation tests currently in use are limited to the treatment of special cases, such as contingency tables or K-sample problems. A new theoretical framework for permutation tests opens up the way to a unified and generalized view. We argue that the transfer of such a theory to practical data analysis has important implications in many applications and requires tools that enable the data analyst to compute on the theoretical concepts as closely as possible. We re-analyze four data sets by adapting the general conceptual framework to these challenging inference problems and utilizing the coin add-on package in the R system for statistical computing to show what one can gain from going beyond the ‘classical’ test procedures.
منابع مشابه
Software-Architecture Recovery from Machine Code
In this paper, we present a tool, called Lego, which recovers object-oriented software architecture from stripped binaries. Lego takes a stripped binary as input, and uses information obtained from dynamic analysis to (i) group the functions in the binary into classes, and (ii) identify inheritance and composition relationships between the inferred classes. The information obtained by Lego can ...
متن کاملEffectiveness of LEGO Therapy on the Mother-Child Relationship of Preschool Deaf Children
Introduction: LEGO therapy is one of the intervention programs that has been shown to encourage significant improvement in the communication of deaf children. The purpose of the present study was to investigate the effectiveness of LEGO therapy on the mother-child relationship of preschool deaf children in the city of Isfahan. Methods: The present research was a semi-experimental study with pr...
متن کاملExact Statistical Inference for Some Parametric Nonhomogeneous Poisson Processes
Nonhomogeneous Poisson processes (NHPPs) are often used to model recurrent events, and there is thus a need to check model fit for such models. We study the problem of obtaining exact goodness-of-fit tests for certain parametric NHPPs, using a method based on Monte Carlo simulation conditional on sufficient statistics. A closely related way of obtaining exact confidence intervals in parametri...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006